
Guideline for the GameJam 2025-01
of Fachschaft Mathematik/Physik/Informatik

2025-01-20

Contents
1 Organisation ... 1
2 Technical Requirements ... 1
3 Introduction: How to develop games? .. 2

3.1 What do I need for a game? .. 2
3.2 Entity-Component-System (ECS) .. 4
3.3 Modularization .. 5
3.4 Where can I obtain free assets? ... 5

4 How to Godot ... 9
4.1 UI ... 9
4.2 Input processing .. 10
4.3 Physics ... 10
4.4 Networking ... 11
4.5 Global state / Keep state across scenes .. 12
4.6 How to cross-compile? .. 12

5 How To Unity ... 13
5.1 UI .. 13
5.2 Input processing .. 14
5.3 Networking ... 15
5.4 Global state / Keep state across scenes .. 15
5.5 How to cross-compile? .. 15

6 Copyright notice .. 16

1 Organisation
• The GameJam starts on 10.01. at 16:30. The final version has to be submitted until 12.01. 18:30.
• The games are rated by you until 15.01. 14:00. Based on the participants’ preselection, you will

present the games to the jury on 15.01. from 15:00 to 17:00. The jury will then choose the winner.
• During the presentation, you will show the games on your own devices. You shall further upload a

compiled version, that is distributed to all participants.

2 Technical Requirements
• The game has to support either Windows (10+) or Ubuntu (24.04+). If possible (your engine supports

this, and you used no OS-specific APIs), you shall submit versions for Windows, macOS, and Linux.
• If your game is intended for gamepads, it must also be possible to play one player with keyboard

and mouse.
• There will be repositories in the RWTH Gitlab. There you submit your final version.
• We do not mandate a specific engine, though we do recommend to use Godot or Unity. We also

recommend that you get familiar with the engine, you would like to use, before the jam starts.
• You may only use assets and libraries that are available free of charge, and only if the license permits

you and us to distribute your unmodified binaries to the other participants. To keep track of the

1

licensing, we recommend creating a list of all used assets and their source, including assets that don’t
require attribution.

3 Introduction: How to develop games?

3.1 What do I need for a game?
To create a game several components are usually needed:

2D Graphics To show something in the game, you will need graphical assets. In 2D games, the
graphics consist of 2D UI Overlay elements like the menu, buttons, or the score. The rest of the game
graphics are also 2D images and are usually called sprites. Often, many sprites are stored together in
the same file called spritesheet or texture atlas. Animations are done by having different variants of
an object and cycling through them.

Figure 1: Example character sprites with walk animations from Corey Archer

3D Graphics In 3D games, the UI overlay is done the same way as in 2D games, but the 3D world
is more complicated.

Figure 2: A screenshot from 0.A.D.. The 2D UI Overlay is marked green. Buildings, People,
Animals, Ground, Trees, and everything else are 3D models.

3D models are usually created in dedicated 3D modelling software like Blender. The components are
shown in Figure 3. The basis is a mesh (usually consisting only of triangles). Next we need textures:
Each vertex (point) in the mesh has a UV-map attribute, that tells to which point in the 2D texture it
corresponds. There can be several textures. The most common textures are diffuse texture (what color
does the point have), normal map (in which direction is light emitted), specular map (how much does

2

https://opengameart.org/content/top-down-pokemon-esque-sprites
https://play0ad.com/media/screenshots/
https://www.blender.org/features/

the reflection use the light color instead of the diffuse color), but there are several other types. Models
also have a material, with many more properties to change its appearance. You can see the influence
of many common properties in these examples for common properties. Additional documentation
including rarer properties are in the blender documentation for physically based rendering (PBR). Note,
that advanced shadered materials from 3D software are usually not exportable to game engines. This
is in part because of lack of standardized formats, but also because games require real-time rendering,
which heavily restricts how complex graphics can be.

For inanimate objects, this is sufficient. For animated objects we need some more components. First,
we add bones to the model (this process is called rigging). Then we say for each combination of bone
and vertex, how much a change in the bone position should influence the position of that vertex (this
process is called skinning). Then for each point and each keyframe, we say what position the bone is in
that frame. This way of animation is called skeletal animation. If the relative position between bones
is fixed, the connection is called a joint.

+ =
Mesh Texture Textured Model

+ =
Bones Weights per Bone Animated Model

Figure 3: Typical components of a 3D model. Example assets from 0.A.D.

Sound Other assets needed are sounds. These are divided into music (in minecraft that would be
the background music or the menu music) and sound effects (short: SFX) (f.e. the placing of a block,
the opening of a door, the click on a menu button). There is usually one music played concurrently,
while sound effects are triggered by events and may overlap without being faded into each other.

Physics Most games need some form of physic simulation. For this, each entity that should be
influenced by physics, gets a component (most commonly a rigid body component). The components
tell the weight of the object, whether its position or rotation is fixed, how much it bounces (bounciness)
or is affected by friction (roughness).

A physics engine simulates in every frame the physical changes to all entities with physical
components. It applies forces, moves objects, determines collisions, resolves collisions by calculating
impulses, and sends collision events to the object’s scripts. Physics other than rigid body physics (f.e.
soft body physics or fluid simulation) are more difficult to use in games. In both Godot and Unity,
colliders can be generated from arbitrary meshes. However, it is much more efficient to use one or
multiple simple shapes (spheres, cubes, capsules or other built-in shapes) as colliders for your entities.

3

https://google.github.io/filament/Material%20Properties.pdf
https://docs.blender.org/manual/en/4.0/render/shader_nodes/shader/principled.html
https://play0ad.com/media/screenshots/

Even games with no physics can need colliders, f.e. to determine which object is selected on a mouse
click. The task of determining what colliders a ray (a line going from a point in one direction) will
intersect is called Ray Casting. When trying this for a collider, it is called Shape Casting.

Game engine The game engine loads required assets on startup and then enters the main loop.
In every frame, the loop will go through several stages (usually this includes PreUpdate , Update ,

and PostUpdate), giving scripts the opportunity to act in these stages. There is also a special stage

called FixedUpdate , that is called a fixed number of times per second, independently of the game’s
frame rate. After each iteration of the main loop, the engine will render the world to the screen. During
rendering, the engine might also perform post-processing steps like antialiasing¹.

Networking For a 2-day game jam you should probably stick to the default networking method of
your game engine. However, if you want to scale and have to consider latencies in a fast-paced game,
you would have to put a lot of thought and work into networking. Some considerations are collected
here. If you want to do your own networking, I also recommend the networking section of the GDC
presentation from the RocketLeague developers on how to design physic-based games.

3.2 Entity-Component-System (ECS)

This section does not apply to Godot, which uses an object-oriented class hierarchy and not ECS.

Game engines sometimes use a design pattern named entity-component-system (ECS)². An entity is
like an object. It could be a physical object in the game, f.e. the player character, the camera, a light
source, a spawn point, or a projectile. But it could also be something without relevant 3D Location, f.e.
an event receiver or a global script. Entities have components, that define the entities’ functionality.

For example, an arrow projectile could have the following components:
• a transform component, that tells where the entity is located in the world and how it is rotated
• a mesh component with the mesh that should be rendered at the entities position
• a collider, that is used by the physics engine to determine whether the arrow hit some other entity
• a rigid body component, that tells the physics engine to move the entity according to rigid body

physics
• a script component, to process events (f.e. the event that the arrow hit another entity)

Figure 4: Screenshot from Unity with the hierarchy of entities to the left (the red box) and the
components of a PlayerArmature to the right (the blue box).

¹See https://docs.godotengine.org/en/stable/tutorials/3d/3d_antialiasing.html for Godot’s options
²Strictly speaking Unity does not use ECS either, but only the EC-pattern. The systems part is not used in Unity.

4

https://github.com/bevyengine/bevy/discussions/8675
https://youtu.be/ueEmiDM94IE?t=1802
https://youtu.be/ueEmiDM94IE?t=1802
https://docs.godotengine.org/en/stable/tutorials/3d/3d_antialiasing.html

3.3 Modularization
Like in almost every programming language, it is helpful to group functionality into modules. For
entities, you might have a player entity with several colliders as children, an item in the hand, a
nameplate on top and components for animation, physics, remaining powerup durations, or input
processing. To avoid recreating this for every player from scratch, you should instead make a scene
for the player figure, and instantiate it for every player. In Godot you just create a regular scene and
instantiate it in another scene. In Unity this not possible. Instead, there are special scenes called Prefabs
that can be instantiated in regular scenes.

3.4 Where can I obtain free assets?

3.4.1 Blendswap
Blendswap is a public exchange platform for blender files, containing over 25, 000 blender files under
(mostly) free licenses. It is mainly useful to obtain meshes. Sometimes the materials and textures are
useful too, but not every blend has textures and not all materials are usable in game engines.

Figure 5: Blendswap search results when searching the term “arena”

3.4.2 Kenney
Kenney creates low-poly 3D assets, simple 2D assets and UI elements, and a few sound effects, and
gives them to the public domain.

Figure 6: Examples for scenes created with Kenney’s graphics

3.4.3 OpenGameArt
OpenGameArt is a public exchange platform for game assets with free licenses. It contains 2D and
3D assets, particle effects, music, and sound effects. A difficulty when using OpenGameArt, are the
different artistic styles used between the many graphics.

5

https://blendswap.com
https://www.kenney.nl
https://www.kenney.nl/assets/pico-8-city
https://www.kenney.nl/assets/fantasy-town-kit
https://www.kenney.nl/assets/game-icons
https://opengameart.org

Figure 7: Examples for scenes created with OpenGameArt assets

3.4.4 Polyhaven
Polyhaven is a collection of high-resolution textures and high-poly 3D models.

Figure 8: Models from polyhaven

The assets from polyhaven usually have many polygons. To lower hardware requirements and compu-
tation effort, you might want to apply the decimate modifier in blender to reduce polygon count with
minimal distortion.

Collapse (ratio = 0.05)
510 faces

Original
10210 faces

Planar (angle limit = 80°)
394 faces

Figure 9: Picnic Table from polyhaven with different decimate settings

6

https://opengameart.org/content/modular-terrain
https://opengameart.org/content/mage-city-arcanos
https://opengameart.org/content/fantasy-icon-pack-by-ravenmore-0
https://polyhaven.com/
https://polyhaven.com/a/ship_pinnace
https://polyhaven.com/a/chess_set
https://polyhaven.com/a/island_tree_02
https://docs.blender.org/manual/nb/4.3/modeling/modifiers/generate/decimate.html
https://polyhaven.com/a/wooden_picnic_table

3.4.5 freesound.org
freesound.org is a platform, containing over 600, 000 sound effects and ambient sounds under (mostly)
free licenses.

3.4.6 0.A.D.
There are many 3D models of ancient buildings, animals with animations, and plants, developed for
the open-source game 0.A.D., available under CC-BY-SA 3.0, and downloadable from https://github.
com/0ad/0ad³.

However, while high-quality and made for games, the animations can be difficult to integrate techni-
cally.

Figure 10: A screenshot from 0.A.D. showing the 3D assets in action.

3.4.7 ambientCG
ambientCG is a collection of public domain high-resolution physically-based materials created by
Lennart Demes. It also contains a few 3D models with textures.

Figure 11: 2 materials and a model from ambientCG

³See files under binaries/data/mods/*/art

7

https://freesound.org/
https://play0ad.com/media/screenshots/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/0ad/0ad
https://github.com/0ad/0ad
https://play0ad.com/media/screenshots/
https://ambientcg.com/
https://ambientcg.com/view?id=Planks037A
https://ambientcg.com/view?id=Tiles131
https://ambientcg.com/view?id=3DBread002

3.4.8 MakeHuman
To quickly create human character models with bones, you can use MakeHuman. The easiest way is
with its blender plugin.

Figure 12: Screenshot of MakeHuman’s blender plugin from their docs.

8

https://static.makehumancommunity.org/makehuman.html
https://static.makehumancommunity.org/mpfb/docs/getting_started.html
https://static.makehumancommunity.org/mpfb/docs/getting_started.html#add-hair-eyes-and-clothes

4 How to Godot
Godot is an open-source game engine under the MIT license. It uses an object-oriented
programming model and has its own scripting language GDScript with optional typing
and python-like syntax. It also supports C#/.NET and has native bindings called GDExten-
sions for C and C++. There are also several community-maintained language bindings like

Kotlin or JavaScript/TypeScript with a modified base engine or Rust, Go, and Swift for GDExtensions.
However, I advise using GDScript or C# as they have the best support, and have a programming model
fitting the engine.

Some general hints for Godot:
• All fields accepting numbers also accept math expressions like sqrt(2) - 1 .
• You navigate in the 3D panel, by pressing the right mouse button and move around with WASD.

Press Shift to fly faster.

4.1 UI
UI components all inherit from the Control class. As simple but powerful layout containers, I

recommend using BoxContainer s or FlowContainer s, which work conceptually similar to flexbox

in the HTML document model. HBoxContainer and VBoxContainer stretch elements along the cross

axis and cannot wrap in main direction. HFlowContainer and VFlowContainer don’t stretch elements
along the cross axis and do wrap in main direction. Elements whose position and size is not determined
by the parent container, can use either absolute positions or anchors.

Figure 13: The VBoxContainer named ButtonContainer in this example is anchored to be in
a rectangle with 0.45 ⋅ 𝚠𝚒𝚍𝚝𝚑 as its left border. The anchor point rectangle is shown by the green
pins in the main view. The rectangle after adding the absolute anchor offsets to each border is
shown as orange box in the main view.

Text colors of Label s, space between of container elements, and similar properties are defined by the
theme and can be overwritten by individual elements. To theme your UI, set the theme in the topmost
UI node.

9

https://godotengine.org/features/
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/index.html
https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/index.html
https://github.com/Godot-Languages-Support/godot-lang-support
https://github.com/utopia-rise/godot-kotlin-jvm
https://github.com/Geequlim/ECMAScript
https://docs.godotengine.org/en/stable/tutorials/scripting/gdextension/what_is_gdextension.html#supported-languages
https://css-tricks.com/snippets/css/a-guide-to-flexbox/

Figure 14: In the right box, you set the theme for a node and all it’s children. On the bottom
panel, you have a preview on the left and a panel to edit the properties (f.e. the text color) of UI
types on the right.

4.2 Input processing
Godot can handle keyboard, mouse, touchscreen, controllers, joystick, and gamepad inputs. Con-
trollers, joysticks or gamepads are modelled the same and named Joypads in the Godot docs. Touch
devices are processed as mouse events with the device property set to −1.

There are two ways to process inputs. One method is, to handle inputs by setting actions in
Projects→Project Settings...→Input Map (Tab) , and then question in _process whether

is_action_pressed or is_action_just_pressed on the Input singleton is true. If you have
multiple input devices the action map does not distinguish between them, so instead you have to
check for keys with is_key_label_pressed or is_physical_key_pressed , or joypad inputs with

get_joy_axis or is_joy_button_pressed .

To know what gamepads are connected you can either query for them with get_connected_joypads

or observe the joy_connection_changed signal.

As a second method, instead of querying input state, you can also process input events as shown in
the Godot docs.

To change a rigid body’s velocity directly (not via impulse or force) based on user input, override
state.linear_velocity in _integrate_forces , don’t change physics state in _process or

_physics_process .

4.3 Physics
You can generate a collider from a MeshInstance3D by selecting it, then open the Mesh options as
shown in Figure 15.

10

https://docs.godotengine.org/en/stable/tutorials/inputs/inputevent.html
https://docs.godotengine.org/en/stable/classes/class_input.html
https://docs.godotengine.org/en/stable/classes/class_input.html
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-is-key-label-pressed
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-is-key-label-pressed
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-is-physical-key-pressed
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-is-physical-key-pressed
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-get-axis
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-get-axis
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-is-joy-button-pressed
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-is-joy-button-pressed
hhttps://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-get-connected-joypads
hhttps://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-get-connected-joypads
https://docs.godotengine.org/en/stable/classes/class_input.html#signals
https://docs.godotengine.org/en/stable/classes/class_input.html#signals
https://docs.godotengine.org/en/stable/classes/class_input.html#signals
https://docs.godotengine.org/en/stable/tutorials/inputs/inputevent.html
https://docs.godotengine.org/en/stable/classes/class_rigidbody3d.html#class-rigidbody3d-private-method-integrate-forces
https://docs.godotengine.org/en/stable/classes/class_rigidbody3d.html#class-rigidbody3d-private-method-integrate-forces

Figure 15: “ Create Trimesh Static Body ” creates a static body (position and rotation are
locked) with a complex collider. The other options create dynamic rigid bodies with colliders of
varying complexity for this mesh.

Figure 16: Inspector view, with a simple shape
(here a sphere) selected

Instead of generating colliders, you can also add
a child of type CollisionShape3D and select a
simple shape in its shape attribute. This is prefer-
able performance-wise.

4.4 Networking
See the docs for an introduction to Godot’s high-level networking and sample code to build a client-
server based lobby. The multiplayer variable is global, and assigning a client or server peer object
to it enables multiplayer via the high-level API.

If you want spawned scenes to replicate on spawn across the network, you will need
MultiplayerSpawner . To sync state continuously, you will need a MultiplayerSynchronizer child
for the synchronized node, which has a script, that sets the properties, that should be synced, in the
replication_config .

11

https://docs.godotengine.org/en/stable/tutorials/networking/high_level_multiplayer.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerspawner.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerspawner.html
https://docs.godotengine.org/en/stable/classes/class_multiplayersynchronizer.html#class-multiplayersynchronizer
https://docs.godotengine.org/en/stable/classes/class_multiplayersynchronizer.html#class-multiplayersynchronizer
https://docs.godotengine.org/en/stable/classes/class_multiplayersynchronizer.html#class-multiplayersynchronizer-property-replication-config
https://docs.godotengine.org/en/stable/classes/class_multiplayersynchronizer.html#class-multiplayersynchronizer-property-replication-config

If you sync the positions of rigid bodies, you should freeze them in FREEZE_MODE_KINEMATIC on
peers that don’t control the body.

4.5 Global state / Keep state across scenes
https://docs.godotengine.org/en/stable/tutorials/scripting/singletons_autoload.html

4.6 How to cross-compile?
To export Godot games to different platforms, you can read their manual, or follow Figure 17.

Figure 17: Open Project→Export for the export menu. There you can add targets with Add .
After adding the first target, Godot will complain that you have no export templates. By click on
Manage Export Templates you can open the dialog to download them. After downloading the
templates, you can add all targets and set the export path for each target. You can either export a
single target with Export Project or all with Export All... after configuring the export path
for every target.

To use headless mode, simply add the --headless option when executing the game.

To run on macOS, enroll the apple developer program or disable gatekeeper.

12

https://docs.godotengine.org/en/latest/classes/class_rigidbody2d.html#class-rigidbody2d-property-freeze
https://docs.godotengine.org/en/latest/classes/class_rigidbody2d.html#class-rigidbody2d-property-freeze
https://docs.godotengine.org/en/latest/classes/class_rigidbody2d.html#enum-rigidbody2d-freezemode
https://docs.godotengine.org/en/latest/classes/class_rigidbody2d.html#enum-rigidbody2d-freezemode
https://docs.godotengine.org/en/stable/tutorials/scripting/singletons_autoload.html
https://docs.godotengine.org/en/stable/tutorials/export/index.html
https://developer.apple.com/programs/enroll/
https://docs.godotengine.org/en/stable/tutorials/export/running_on_macos.html

5 How To Unity
Unity is a proprietary engine that might be used at no cost for small projects (see the EULA and
whatever you have to consent, when downloading a license key). It only officially supports C# as
scripting language. Other .NET language might work, but I discourage using them, and recommend
sticking to the only language that is well tested, where bugs are fixed, and that is used in all Unity
documentation.

To obtain Unity, use UnityHub. You will also need to register as student or personal user.

Using Git with Unity is generally a nightmare, because Unity uses UUIDs in its files, making them
difficult to read, and randomly changes some fractional digits when different systems load a file and
save it unchanged. Use this gitignore as a starting point, to get some control over the giant pile of files
Unity will create.

5.1 UI
The GalacticKittens sample project referenced below still uses the old UI system. It is simple to start
with, but inflexible and unresponsive. The new system UI Toolkit builds UIs from XML and CSS with
flexbox for layouts.

1 <ui:UXML xml
2 xmlns:ui="UnityEngine.UIElements" xmlns:uie="UnityEditor.UIElements"
3 xsi="http://www.w3.org/2001/XMLSchema-instance"
4 engine="UnityEngine.UIElements" editor="UnityEditor.UIElements"
5 noNamespaceSchemaLocation="../UIElementsSchema/UIElements.xsd"
6 editor-extension-mode="False"
7 >
8 <ui:Style src="OverlayBig.uss"/>
9 <ui:VisualElement name="full-screen-column">
10 <ui:VisualElement name="top-row">
11 <ui:Label class="fixed-portion" text="Testgame" name="mode"/>
12 <ui:Label class="fixed-portion" text="Left" name="team-left"/>
13 <ui:Label class="fixed-portion" text="" name="score"/>
14 <ui:Label class="fixed-portion" text="Right" name="team-right"/>
15 <ui:Label class="fixed-portion" text="0:00" name="time"/>
16 </ui:VisualElement>
17 </ui:VisualElement>
18 </ui:UXML>

Listing 1: UXML example

13

https://unity.com/legal/eula
https://docs.unity3d.com/hub/manual/InstallHub.html
https://unity.com/products
https://github.com/github/gitignore/blob/main/Unity.gitignore
https://docs.unity3d.com/Manual/UIElements.html
https://css-tricks.com/snippets/css/a-guide-to-flexbox/

1 #top-row { css
2 flex-grow: initial;
3 flex-direction: row;
4 justify-content: center;
5 font-size: 36;
6 -unity-font: url("../Fonts/OpenSans-Bold.ttf");
7 background-color: lightgray;
8 height: 5%;
9 /* vertical horizontal */
10 padding: 2px 8px;
11 margin: 0;
12 }

Listing 2: USS example

5.2 Input processing
There are two input systems. The old one, called Input Manager, and the new one in the InputSystem-
Package. The new input system has a simple way (actionmaps) and a complex way (event handling)
of processing user input.

The simple way is shown by the docs. You create an *.inputactions file with actions that are then

mapped to On<actionname> methods. This works if you have only one input device per local game
instance. However, it is unsuited if you want to allow a multiplayer mode by connecting multiple
gamepads to the same PC. In that case you need the to handle InputEvents that know what device
triggered them.

The complex way, used in that case, is to register handlers for events in
UnityEngine.InputSystem.InputSystem .

1 // on device connect or disconnect cs
2 void OnDeviceChange(InputDevice device, InputDeviceChange change);
3 // on input
4 void OnInputEvent(InputEventPtr inputEvent, InputDevice inputDevice);
5
6 // register
7 UnityEngine.InputSystem.InputSystem.onDeviceChange += OnDeviceChange;
8 UnityEngine.InputSystem.InputSystem.onEvent += OnInputEvent;
9
10 // unregister
11 UnityEngine.InputSystem.InputSystem.onDeviceChange -= OnDeviceChange;
12 UnityEngine.InputSystem.InputSystem.onEvent -= OnInputEvent;

Listing 3: Usage of InputSystem Package

14

https://docs.unity3d.com/Manual/class-InputManager.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.7/manual/index.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.7/manual/index.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.7/manual/ActionAssets.html

Figure 18: Example of an action map with an action Move of type 2D vector, that can be triggered
on keyboard by WASD keys or with on gamepad with the left stick.

5.3 Networking
Use NetCode GameObjects. You can see it in use in GalacticKittens. See especially the NetworkManager

component in the Scenes/Bootstrap , which has a list of Prefabs that need synchronization over

the network. See also the Network Object , Client Network Transform , and Network RigidBody

components in Prefabs/Net/Player/PlayerShipBase , which are needed to determine what proper-
ties should be synchronized.

5.4 Global state / Keep state across scenes
Keep entities with DontDestroyOnLoad after scene and initialize them in a bootstrapping scene. Again,
see GalacticKittens.

5.5 How to cross-compile?
You can adapt the build file from my bubbleball project and put it into Assets/Editor/Builds.cs to
create a Unity Toolbar Item for builds.

To make it work, you need to have the modules for all supported platforms installed via UnityHub as
seen in Figure 19.

15

https://github.com/Unity-Technologies/com.unity.netcode.gameobjects/tree/develop
https://github.com/UnityTechnologies/GalacticKittens/tree/main
https://github.com/UnityTechnologies/GalacticKittens/blob/main/Assets/Scripts/Utility/Singleton.cs
https://osak.fsmpi.rwth-aachen.de/files/gamejam-2024-07-05/Builds.cs

Figure 19: Module options on Linux for Linux, macOS, and Windows support for both graphical
and headless (dedicated server) mode. Since this screenshot was done on Linux, there is no
Linux Build Support (Mono) option, which is built-in on Linux. If you are on Windows, the

Windows Build Support (Mono) option would be built-in and Linux Build Support (Mono)
has to be selected additionally.

6 Copyright notice
This document © 2024 by Lars Frost is licensed under the CC BY-SA 4.0. You may
redistribute it and/or modify it under the terms of the license. All assets are used under

license from their copyright holders. Their sources, where you can find author and license, are linked
in the images or their caption.

16

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Organisation
	Technical Requirements
	Introduction: How to develop games?
	What do I need for a game?
	Entity-Component-System (ECS)
	Modularization
	Where can I obtain free assets?
	Blendswap
	Kenney
	OpenGameArt
	Polyhaven
	freesound.org
	0.A.D.
	ambientCG
	MakeHuman

	How to Godot
	UI
	Input processing
	Physics
	Networking
	Global state / Keep state across scenes
	How to cross-compile?

	How To Unity
	UI
	Input processing
	Networking
	Global state / Keep state across scenes
	How to cross-compile?

	Copyright notice

